If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-28x-14=0
a = 14; b = -28; c = -14;
Δ = b2-4ac
Δ = -282-4·14·(-14)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28\sqrt{2}}{2*14}=\frac{28-28\sqrt{2}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28\sqrt{2}}{2*14}=\frac{28+28\sqrt{2}}{28} $
| (x+6)(x-5)(x-18)=0 | | 12=6/5v | | 9x+13=17x+15 | | r-6=r+4 | | m5=11 | | 28=2x(6x-7) | | 3x-25=6x+10 | | 18=r3 | | 1+3x/7+3-x/3=32/21 | | 8(6x-1)=8(6x+7) | | 3/4(6m-2)=246 | | 6c-8-4c=-16-2c | | 4-(z+7)=8 | | 12(x+1)-6x=30 | | m/15=28/60 | | 16(7t−9)=t+912 | | y/4-12=88 | | 8x+37=5(x+2) | | 2(3w)=6+2w | | 2(y-5)=0 | | 6(-2x+8)=-48 | | -4(v-4)=-6v+26 | | -9v+24=-7(v-4) | | (6y-4)+(5y-3)=180 | | 20×(9x+1)=9560 | | 2v^2+17v+8=0 | | 5(-7x+1)=-380 | | 3(19-11y)+5y=1 | | 4=2(x+8)-8x | | 29=7w+2(w-8) | | 24t-3t=0 | | y=-3+20 |